LBP (Local Binary Pattern)
Local
)内,中心点像素值与周围8个点的大小关系,大于中心点,取值为1;小于中心点,取值为0(Binary
), 将8位0/1表示的二进制转换为十进制表示,得到该点处的LBP特征的数值SIFT (Scale Invariant Feature Transform)
算法流程
尺度不变性
)旋转不变性
)特点
尺度
, 旋转不变性,光照变化不敏感HOG (Histogram of Oriented Gradients)
算法流程:
HOG将图片均匀分成多个cell,对每个cell进行梯度直方图统计,多个cell组成一个block,在单个block做归一化(block之间存在重叠),这样对光照变化鲁棒。每个block得到一个向量,将所有block特征合并得到最后的HOG特征表示
算法特点:
! HOG与SIFT的区别:
The R-HOG blocks appear quite similar to the scale-invariant feature transform (SIFT) descriptors; however, despite their similar formation, R-HOG blocks are computed in dense grids at some single scale without orientation alignment, whereas SIFT descriptors are usually computed at sparse, scale-invariant key image points and are rotated to align orientation. In addition, the R-HOG blocks are used in conjunction to encode spatial form information, while SIFT descriptors are used singly. (From wikipedia HOG)
评论 (0)