版权属于:
人工智能炼丹师
作品采用:
《
署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0)
》许可协议授权
Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [Code]
1. Metric:
2. Motivation: Swin transformer 的优点: 解决长序列问题;窗口内Attention + 窗口间信息交互; UNet的优点: 局部信息, ShortCut
3. Main Contributions:
4. Model Structure:
5. Take Home Message: 上采样方式patch expanding layer
Medical Transformer: Gated Axial-Attention for Medical Image Segmentation [Code]
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers [Code]
MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation [Code]
评论 (0)