首页
常用链接
关于
Search
1
Pytorch DDP
2,093 阅读
2
Pytorch 常见问题
1,210 阅读
3
视频时序切分
854 阅读
4
Semi-Supervised + Noisy Label
747 阅读
5
中文场景下的CLIP图文预训练
738 阅读
阅读
论文阅读
多模态理解
计算机视觉
Video Understanding
Segmentation
AIGC
机器学习
编程开发
C++
Python
LeetCode
Shell
Pytorch
模型加速
广告
广告基础知识
推荐算法
创意优选
购房/投资
职场经验复盘
默认分类
Search
标签搜索
python
Pandas
transformer
视觉传统方法
创意质量
git
shell
视频理解
Pytroch
nlp
DDP
图像自监督预训练
安装包
视频流行度
Jefxiong
累计撰写
50
篇文章
累计收到
7
条评论
首页
栏目
阅读
论文阅读
多模态理解
计算机视觉
Video Understanding
Segmentation
AIGC
机器学习
编程开发
C++
Python
LeetCode
Shell
Pytorch
模型加速
广告
广告基础知识
推荐算法
创意优选
购房/投资
职场经验复盘
默认分类
页面
常用链接
关于
搜索到
1
篇与
论文阅读
的结果
2024-08-04
多模态预训练模型之CogVLM
CogVLM:VISUAL EXPERT FOR LARGE LANGUAGE MODELS 被多个文生图模型广泛使用,包括SD3、可图用作Caption模型 图像 & 文本分别建模的思想在SD3中的MMDIT中也被应用到 1. Motivation 浅层对齐的缺陷:例如BLIP2的QFormer或者LLAVA的MLP,作者认为是导致幻觉的一个重要原因 浅层对齐 + 图文联合训练(LLM+Vision+adapter)会损害NLP的能力: Qwen-VL 等模型,会导致文本理解能力的灾难性遗忘【只要训练数据配比得当,就能避免这个问题?】 2. 主要贡献 模型结构: 引入视觉专家(QKV matrix+ FFN): 冻结LLM,100%保留文本对话能力 视觉位置编码:图像特征共享一个位置编码,对于高分辨率理解有帮助。 3. 一些细节 3.1 消融实验(caption 任务 + VQA任务) 模型结构 & 微调的部分:【视觉专家 + MLP adapater】比其他更好,(为什么没有微调视觉+LLM+adapter全量实验,在下游任务上全量FT应该可以更好),该部分影响最大 采用LLM的权重来初始化Visual Expert能够提升性能(应该能加速训练,和LLM expert融合会更容易) 视觉部分,单向注意 or 双向注意的影响,使用单向注意反而更好 视觉部分的自回归监督,没有提升 EMA可以多数任务上均能带来提升 3.3 训练数据细节 3.3.1 预训练数据 LAION-2B + COYO-700M-> 1.5B Visual grouding: 40M(GLIP v2预测的bounding box作为GT),从LAION-115M中过滤出来的40M(75%的图片包含至少两个目标框) 3.3.2 SFT数据(50w) LLaVA-Instruct (corrected) LRV-Instruction LLaVAR in-house data 3.4 训练细节 在SFT阶段,对LLM进行训练,学习率为base其他参数的10%,VIT始终保持固定
2024年08月04日
123 阅读
0 评论
0 点赞
粤ICP备2021042327号